

Cronobacter in the Spotlight: New Insights Into a Known Organism July 13, 2022

Organized by: ILSI Europe With support from IAFP's Low Water Activity Foods PDG, Microbial Modelling and Risk Anaysis PDG, and International Food Protection Issues PDG

Moderator: Anett Winkler, Cargill Germany Sponsored by the IAFP Foundation

IAFP FOUNDATION

International Life Sciences Institute

Webinar Housekeeping

- It is important to note that all opinions and statements are those of the individual making the presentation and not necessarily the opinion or view of IAFP.
- All attendees are muted.
- Questions should be submitted to the presenters during the presentation via the Questions section at the right of the screen. Questions will be answered at the end of the presentations.
- This webinar is being recorded and will be available for access by IAFP members at <u>www.foodprotection.org</u> within one week.

Cronobacter in the spotlight: New insights into a known organism

Moderator: Anett Winkler, Cargill Germany

that improve public health & safeguards the environment

collaboration

/		
		•)
V		
	.	<u> </u>

common challenges

science

communicate & disseminate

that improve public health & safeguards the environment

collaboration

common challenges

science

communicate & disseminate

Microbiological risk-based decision tool for use of dried spices and herbs, dried vegetables, and dried fruits in foods

Cargill Mondelēz International Institut Mérieux General Mills Campden BRI Wageningen University University of California University of Gent Catholic University of the Sacred Heart

that improve public health & safeguards the environment

collaboration

1.	내는	-H `
/ i		
1 9		•)
		<u> </u>

common challenges

science

communicate

& disseminate

- ✓ Investigate microbial issues in foods that are related to public health risks
- ✓ Facilitate the development of harmonised, sciencebased approaches to predict and prevent microbiological risks

that improve public health & safeguards the environment

collaboration

International Journal of Food Microbiology Volume 356, 16 October 2021, 109351

Review

FI SEVIE

Processing environment monitoring in low moisture food production facilities: Are we looking for the right microorganisms?

François Bourdichon * ¹ A 22, Ray Betts *, Christophe Dufour ⁴, Séamus Fanning *, Jeffrey Farber ¹, Peter McClure *, Despoins Angeliki Stavropoulou ¹, Ellen Wemmenhove¹, Marcel H. Zwietering¹, Anett Winkler

COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY.

Guidance on validation of lethal control measures for foodborne pathogens in foods

+

common

challenges

Erdogan Ceylan¹ | Abejandro Amezquita¹ | Nathan Anderson¹ (hoy Betts⁴) Laurence Blass² | Francisco Garces-Vega⁶ | Elissavet Gkogka⁶ | Linda J. Harris⁶ Peter McClure⁹ | Anett Winkler¹⁰ | Heidy M. W. den Besten¹⁰

science

communicate & disseminate

International Journal of Food Microbiology 285 (2018) 110-128 Contents lists available at ScienceDirect

Review

Foodborne viruses: Detection, risk assessment, and control options in food processing

Albert Bosch", Elissavet Gkogka^b, Françoise Lilou van Lieshout^{f,*}, Balkumar Marthinh, ichultzk, Anett Winkler, So WILEY

that improve public health & safeguards the environment

Anett Winkler Cargill Germany EMEA Microbiologist

Moderator

- 20 years at Kraft/Mondelez as microbiologist in various roles
- Performed numerous validation studies for nut, dairy & cocoa processing
- Global expert for thermal processing within Mondelez International
- Joined Cargill in October 2017 in her current role
- Also active in ILSI Europe (Microbiological Food Safety), and IAFP

Séamus Fanning University Collage Dublin, Ireland Professor of Food Safety & Zoonoses

Speaker

- Appointed to UCD in 2002 and currently is the Director of the UCD-Centre for Food Safety (20 years as a Full Professor)
- More than 30 years research experience, applying molecular methods to food safety challenges
- Served as an expert member of several WHO/FAO missions
- A serving member on editorial boards of learned journals including *Journal of Food Protection; Foodborne Pathogens & Disease and Research in Microbiology*
- Elected as a Fellow of the American Academy of Microbiology (FAAM) in 2019

François Bourdichon Universitá Cattolica Del Sacro Cuore Research Collaborator

- 15 years in the Food Industry: Savenica (FR), Danone (FR), Nestlé (CH), Barry Callebaut (BE)
- Since January 2017, Principal Consultant at Food Safety Microbiology and Hygiene
- Research Collaborator in DiSTAS, Dipartimento di Scienze e Tecnologie Alimentari per una filiera agro-alimentare Sostenibile, Universitá Cattolica Del Sacro Cuore, Piacenza, Italy
- Member of the IAFP since 2007
- Elected as a Fellow of the American Academy of Microbiology (FAAM) in 2019

Marcel Zwietering

Wageningen University, The Netherlands Professor Food Microbiology

- 19 years professor
- 5 years Danone Research
- 10 years university
- ICMSF chair
- Active in ILSI Europe (Microbiological Food Safety Task Force) and IAFP

Roy Betts Campden BRI, UK Head of Microbiology

- Head of Microbiology at Campden BRI and independent international food research organisation based in the UK
- Originally managed a research team at Campden BRI concentrated on research, development and validation of microbiological test methods.
- Currently his interests moved to the assessment of the microbiological quality and safety of foods, advising industry on techniques and procedures to produce and market high quality safe foods.
- Active member of ILSI Europe (microbiological Food Safety, the UK Food and Drink Federation Food Hygiene Sub Committee and the UK Advisory Committee on the Microbiological Safety of Foods as well as British Standards Institute and ISO committees dealing with microbiological test methods

Stephen Forsythe

Guest lecturer at the University of Hong Kong and Advisor Center for Food Safety, South Africa Professor of Microbiology

- 'Retired' Professor of Microbiology from Nottingham Trent University (NTU), UK
- Guest lecturer at the universities of Hong Kong (HKU), Kuopio (Finland), BOKU (Vienna), Stellenbosch, as well as an external advisor to 'Center for Food Safety', Stellenbosch, South Africa
- Previously he was external advisor to the UK's Food Standards Agency (2010-2019), European Food Safety Authority (2003-2007) and World Health Organisation (2004-2014).
- He was external advisor to all three FAO-WHO risk assessments on Cronobacter in infant formula (2004, 2006 & 2008), and ready to eat infant foods in famine relief (2012 & 2014)
- >110 publications are on Cronobacter and related organisms

 Please ask your questions in the question box, not in the common chat box – thank you.

ILSI

EUROPE

Wednesday 13th July, 2022

An introduction to *Cronobacter* species –a food-borne pathogen of concern to PIF manufacturers

Professor Séamus Fanning, UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Ireland.

Cronobacter species (formerly known as *Enterobacter sakazakii*) -

General characteristics-

- member of the Enterobacteriaceae family
- Gram-negative, motile rods
- facultatively anaerobic
- designated as a species in 1980
- taxonomy revised and a new genus
 recognised
- grows readily on laboratory media
- desiccation resistant
- rare opportunistic pathogen & causes

nosocomial infections

Reported invasive *Cronobacter* infections recorded among infants in the US & recent global cases/outbreaks -

4th quarter

Recent global cases/outbreaks-

Year	Number of cases
2022	4
2016	1
2015	1
2011	4
2010	2
2007	1
2006	1
2005	1
	Year 2022 2016 2015 2011 2010 2007 2006 2005

		<u>A-Z</u>	Index
Search			Q
	Adv	anced s	Search
	0		6.3

f <i>Cronobacter</i> Homepage	Cronobac
Frequently Asked Questions	Investigat
Signs and Symptoms	<u>Español (Spanish)</u>
Transmission	Updated March 25, 20
People at Risk +	On February 17, 20.
Testing and Treatment	<i>Cronobacter</i> contar
	Parents and caregiv

Prevention and Control

Powdered Infant Formula Investigation

Resources

Cronobacter

CDC > Cronobacter Homepage

cter and Powdered Infant Formula tion

2022

22, and February 28, 2022, Abbott Nutrition recalled powdered infant formula manufacturing facility in Sturgis, Michigan, because of possible mination.

vers of newborns should not feed their baby recalled Similac, Alimentum, or EleCare powdered infant formulas.

Fast Facts

- Illnesses: 4
- Deaths: 2
- States: 3 (Minnesota, Ohio, Texas)
- Recall: Yes
- Investigation status: Active

Routes of contamination in reconstituted formula -

Antibiotic susceptible testing Macrophage survival assay *phoP/Q*

Invasive E. sakazakii disease in infants -

Infection is linked to infant formula

Neonates < 1 month are at most risk

12 bacteremia

- birth weight 850 g

- 27.8 weeks gestation
- infection developed at 35 days

- 11 (33%) seizures
- 7 (21%) brain abscess
- 14 (42%) died

- 24 of 26 infants consumed infant milk formula
- 15 (68%) of 22 cases yielded Enterobacter sakazakii
- 13 of the 22 formula strains were identical

23

[Patrick et al. (2014) Emerg Infect Dis. 20(9):1536-9.]

Properties	Description
Symptoms	- Necrotizing enterocolitis
	- Bacteraemia
	- Meningitis
Long term complications	- Delayed neurological development
	- Hydrocephalus
	- Permanent neurological damage
Infectious dose	Not known
Infectious period	Not known
Duration of illness	Not known
Food most frequently implicated	Powder Infant formula

What is the source of *Cronobacter*?

Plants may be the natural habitat for *Cronobacter* species-

> physiological features such as yellow pigmentation; EPS; and persistence in a desiccated state suggest that the bacterium may have an environmental niche

Cronobacter have been isolated from plant roots

> the bacterium can be found in association with the rhizosphere

 Cronobacter can endophytically colonize the roots of tomato and maize plants

[Schmid, et al (2009) Res. Microbiol. 160: 608-614]

[Stephan et al (2014) Int. J. Syst. Evol. Microbiol. 64: 3402-3410]

Comparing the phenotypes between *Cronobacter* and *Enterobacter* species?

Dhanat	Cronobacter species			Enterobact		ter					
Phenotype reaction		C. sak	C. mal	C. dub	C. muy	C. tur	C. con	C. uni	E. tur	E. pul	E. hel
Voges-Proskau	er (VP) ⁿ	V ^D	+ ^D	+	+	+	+	+	-	-	-
Methyl Red ⁹		V	_b	-	-	-	-	-	+	+	+
Ornithine decar	boxylation	V	V	+	+	+	+	V	-	-	-
Arginine dihydro	olation	+	+	+	+	+	+	+	-	-	-
Acid ^d from:											
D-cellobiose	e	+	+	+	+	+	+	+	-	+	-
D-arabitol		-	-	-	-	-	-	-	-	+	-
Sucrose		+	+	+	+	+	+	+	-	+	-
L-rhamnose	9	+	+	+	+	+	+	+	+	+	-
Malonate utilization ^t		-	+	V	+	+	+	V	+	-	+
Palatinose		+	+	+	+	+	+	+	-	-	-
									<u>ل</u> ہ۔		
	Enterobac Enteronac	ter hel ter pul	veticus veris		\rightarrow	Fran Fran	nconiba nconiba	acter helv acter pulv	eticus eris		
	Enterobac	ter turi	censis		\rightarrow	Sicc	ibacte	r turicensi	is		

[Stephan et al (2014) Int. J. Syst. Evol. Microbiol. 64: 3402-3410]

Motility –swim assay

patho-adaptation [?]

A uniquely adapted *Cronobacter sakazakii* isolate detected in a PIF production environment using PFGE sub-typing

Tolerance to desiccation with time -

Thermo-tolerant Cronobacter sakazakii SP291 -

Strain	Spacias	Origin	D 60 value (min)		
Stram	opecies		Dry heat	Wet heat	
ATCC [®] 12868	Cronobacter sakazakii	Unknown	52.37	0.18	
ATCC [®] BAA-894	CC [®] BAA-894 Cronobacter sakazakii		27.19	0.16	
SP291	291 <i>Cronobacter sakazakii</i>		120.28	0.15	
S15	Salmonella Anatum	PIF	52.37	0.28	
S34	Salmonella Ealing	Clinical	66.4	0.16	
ATCC [®] 13076	Salmonella Enteritidis	Unknown	90.54	0.18	

What are the bacterial characteristics that contribute to survival of *C. sakazakii* SP291 at <u>low</u>-moisture in the PIF environment?

[Cooney, S. (2012) PhD thesis. University College Dublin]

Genome of Cronobacter sakazakii SP291 -

RNA-seq work plan -

Stress response genes identified in C. sakazakii SP291 -

Category	Gene Number	
Osmotic stress	37	2
Cold & heat shock	25	
Dessication stress	10	
Detoxinfication	11	
Oxidative stress	65	
Periplasmic stress	7	
Others	29	
Total number	184	V.

No.	Gene	Size (bp)	Function	
1	betB	1472	Betaine aldehyde dehydrogenase	
2	betA	1679	Choline dehydrogenase	
3	betl	608	Helix-turn-helix (HTH)-type transcriptional regulator Betl	
 4	betT	2030	High-affinity choline uptake protein BetT	J
5	opuCA	1145	Glycine betaine/carnitine/choline transport, ATP-binding protein OpuCA	
6	opuCB	647	Glycine betaine/carnitine/choline transport, ATP-binding protein OpuCB	
7	opuCC	905	Glycine betaine/carnitine/choline transport, ATP-binding protein OpuCC	
8	opuCD	713	Glycine betaine/carnitine/choline transport, ATP-binding protein OpuCD	
9	proP	1506	L-Proline/Glycine betaine transporter ProP	
10	proV	1202	L-Proline/glycine betaine ABC transport system permease protein ProV	
11	proW	1070	L-Proline glycine betaine ABC transport system permease protein ProW	
 12	proX	995	L-Proline glycine betaine binding ABC transporter protein ProX	J
13	<mark>yehX</mark>	941	Osmoprotectant ABC transporter ATP-binding subunit YehX	
14	<mark>yehZ</mark>	908	Osmoprotectant ABC transporter binding protein YehZ	
15	<mark>yehW</mark>	731	Osmoprotectant ABC transporter inner membrane protein YehW	
16	yehY	1,133	Osmoprotectant ABC transporter permease protein YehY	

The expression of stress response genes during desiccation -

Confirmation of expression by qPCR -

Physiological role of trehalose in desiccation

Comparison between the desiccation curves of-

C. sakazakii ATCC[™]29544^T (clinical) and C. sakazakii SP291 (environmental)-

- Stage I (Desiccation 0-1 h)

- o no obvious change in viable cell count
- Stage II (Desiccation 1 to 2 h)
- o liquid on the coupon evaporated completely
- a sharp reduction in the viable cell count (~2.5 log_{10} reduction in 1 h for ATCCTM29544)
- Stage III (Desiccation 2 to 4 h)
- bacteria were continuously desiccated on the coupon
- o decrease in viable cell counts at a much slower rate (~1 log₁₀ reduction in 2 h for ATCC[™]29544)

- Stage IV (Rehydration 0-30 min)

 viable cell count change for *C. sakazakii* ATCC[™]29544 was larger than that for SP291 during each stage

16S rRNA sequencing/metagenomics -

Overall strategy for sequencing a food/environmental sample containing multiple microorganisms

 understanding the microbial ecology of a food production facility is essential

 differentiating persistent from non-persistent isolates recovered and based on their phenotype is *important to support* food safety controls

 modern technological advances, including whole genome sequencing of key isolates, linked to their phenotypes, will improve our understanding of how bacteria adapt/behave in these hostile environments and provide novel biomarkers to aid their detection and subsequent risk reduction

Thank you

Round table discussion

 Please ask your questions in the question box, not in the common chat – thank you.

Thank you for your attendance!

FEEDBACK

KKORZENIOWSKI@ILSIEUROPE.BE IGUELINCKX@ILSIEUROPE.BE SEND VIA E-MAIL

E,

Contact information

- Anett Winkler: <u>anett_winkler@cargill.com</u>
- Séamus Fanning: <u>sfanning@ucd.ie</u>
- Stephen Forsythe: sforsythe4j@gmail.com
- Roy Betts: roy.betts@campdenbri.co.uk
- Francois Bourdichon: francois.bourdichon@gmail.com
- Marcel Zwietering: <u>marcel.zwietering@wur.nl</u>
- ILSI Europe: <u>kkorzeniowski@ilsieurope.be</u>
- IAFP: <u>dsiedenburg@foodprotection.org</u>

Be sure to follow us on social media

@IAFPFOOD

IAFPFood

InternationalAssociationforFoodProtection

international-association-for-food-protection

This webinar is being recorded and will be available for access by **IAFP members** at <u>www.foodprotection.org</u> within one week.

Not a Member? We encourage you to join today. For more information go to: <u>www.FoodProtection.org/membership/</u>

All IAFP webinars are supported by the IAFP Foundation with no charge to participants.

Please consider making a donation to the <u>IAFP Foundation</u> so we can continue to provide quality information to food safety professionals.

