Exploring Non-Invasive Instruments to Assess the Microbiological Quality and Authenticity of Meat and Meat Products

Organized by: Microbial Modelling and Risk Analysis PDG

Moderator: Panagiotis Skandamis, *Researcher, Agricultural University of Athens, Greece*

Sponsored by the

Please consider making a contribution

This webinar is being recorded and will be available to IAFP members within one week.

International Association for

Food Protection

Webinar Housekeeping

- It is important to note that all opinions and statements are those of the individual making the presentation and not necessarily the opinion or view of IAFP.
- All attendees are muted. Questions should be submitted to the presenters during the presentation via the Questions section at the right of the screen. Questions will be answered at the end of the presentations.
- This webinar is being recorded and will be available for access by IAFP members at <u>www.foodprotection.org</u> within one week.

International Association for **Food Protection**

Today's Moderator

Panagiotis Skandamis, Moderator

Researcher, Agricultural University of Athens, Greece

Dr. Panagiotis N. Skandamis is Professor of Food Microbiology and Food Quality Control and Food Hygiene in the Agricultural University of Athens and member of the BIOHAZ panel of European Food Safety Authority (EFSA). He has worked as a post-doctoral fellow in the Department of Animal Science of Colorado State University in USA. In 2004, he joined the Department of Food Science & Technology of AUA. Dr. Skandamis has (co-) authored 187 original research papers in journals of SCI, 30 book chapters, another two, currently under preparation, edited 1 book and has a total number of 7042 citations (h-index 37).

His research is funded by 5th-7th EU Framework Programs, HORIZON 2020, competitive Grants from Greek Research and Technology Funding Agency, as well as direct contracts with the Greek Food Industry in the following areas: (i) active antimicrobial and intelligent packaging of foods; (ii) food spoilage and safety; (iii) biofilm formation and removal by chemical and natural disinfectants, (iv) predictive microbiology of foods and quantitative microbial risk assessment, (v) application of antimicrobial interventions; (vi) detection, isolation and subtyping of foodborne pathogens from foods and food processing environments.

He has been Associate Editor in Food Research International (2012-2017). Currently he is serving as scientific co-editor in Journal of Food Protection and member of the Editorial Board in Applied and Environmental Microbiology, International Journal of Food Microbiology and Frontiers in Microbiology.

Dr. Skandamis is member of the scientific committee of International Conference in Predictive Microbiology in Foods (ICPMF) since 2008, member of the organizing committee of European symposium of International Association of Food Protection (IAFP) since 2015, and current co-President of the FoodMicro 2020. He is also Chair of the Professional Development Group of "Microbial Modelling and Risk Assessment" of IAFP.

Predictive Modeling software development: Dr. Skandamis is the developer of GroPIN (www.aua.gr/psomas), a Predictive Modelling Software tool, which constitutes a database of >400 kinetic and probabilistic models for pathogens and spoilage organisms in response to a variety of intrinsic and extrinsic foods parameters (e.g., T, pH, aw, preservatives, atmosphere, etc.).

Today's Presenters

George Nychas

Professor, Agricultural University of Athens, Greece

George Nychas is Professor in Food Microbiology in the Dept of Food Science & Human Nutrition of Agricultural University of Athens (Greece). The last 25 years coordinated 6 European Projects and participated in more than 35 EU projects (budget >15 M €).

Through these projects, the team of Prof. G-J., Nychas has acquired extensive experience on; (a) on modelling the behaviour of microbial populations throughout the food chain to assist reliable estimation of microbial food safety risk (b) Implementation of Process analytical technology (PAT) in Food Industry introducing sensors (non destructive non- invasive) (c) the assessment of food safety and spoilage through microbiological analysis in tandem with metabolomics and data mining.

So far he has published 284papers (Scopus) with ca. 14700 citations and h=71 and he is (i) Chairman of food safety group of European Technological platform food for life (ii) member of the pool of scientific advisors on risk assessment for DG SANCO, while he served as co-chair (2008-2010) in the Professional Development Group of "Microbial Modeling and Risk Analysis" of International Association for Food Protection, member of the Biohazard panel and the Advisory Forum of EFSA, external expertise to the European Parliament, President of the Greek Food Authority.

Recently (Nov 2018) he was listed among the top 1% of highly cited researchers in the field of Agriculture Science (Web of Knowledge – Clarivate)

Exploring Non-Invasive Instruments to Assess the Microbiological Quality, Fraud and Authenticity of Meat and Meat Products

George-John NYCHAS

Laboratory of Microbiology and Biotelogy of Foods, Department of Food Science and Human Nutrition Agricultural University of Athens, Athens, Greece

WEBINAR's STRUCTURE

- Definitions; Quality vs Safety vs Fraud vs Food Crime
- Current approaches; Assessing Meat Quality, Safety & Adulteration
- Future approaches; Assessing Meat Quality, Safety & Adulteration
- Tools; (a) Non-destructive methods for assessing meat quality, safety and Fraud (b) Implementation of ML in meat quality safety, authenticity (c) IoT serving meat sector
- Use Cases; Meat microbiological quality, beef vs horsemeat, beef vs pork & poultry vs pork

WEBINAR's STRUCTURE

Definitions; Quality vs Safety vs Fraud vs Food Crime

Adulteration Future approaches: Assessing Meat Quality, Safety & Adulteration Focisita) Non-destructive methods for assessing mea quality, safety and Fraud (b) implementation of VIL in

Use Cases;

QUALITY vs SAFETY

Food safety is dealing with all those hazards, whether chronic or acute, that may make food injurious to the health of consumers, and is not negotiable.

Quality includes all other attributes that influence a product's value e.g. spoilage, flavour, texture, contamination and adulteration.

[QUALITY vs SAFETY] vs FRAUD

Fraud in the context of food, means that the description of the origin of food, its composition and how it has been obtained and/or prepared, shall be truthful, i.e.

(i) nothing of lesser economic value must be added, or

(ii) removed if it is of higher economic value.

(iii) the information about origin, composition, etc

Meat fraud:

Examples;

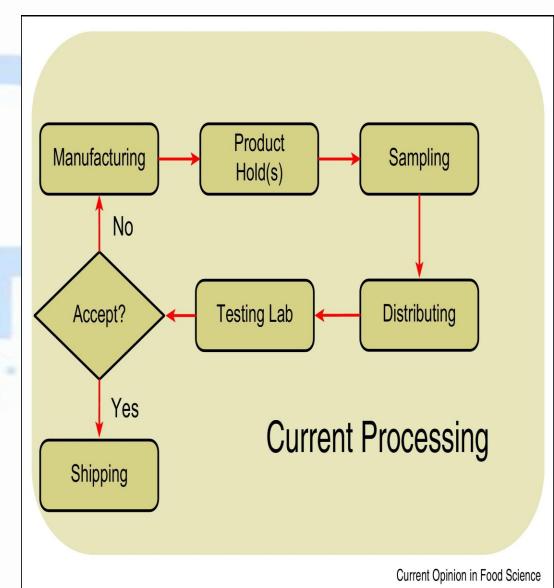
Pork does not belong in a kebab (beef or lamb)or a beef sausage.

[QUALITY vs SAFETY vs FRAUD] vs FOOD CRIME

Food crime can be defined as "serious fraud and related criminality within food supply chains that impacts the safety or the authenticity of food, drink or animal feed. It can be seriously harmful to consumers, food businesses and the wider food industry."

Examples of food crime include the use of stolen food in the supply chain, unlawful slaughter, diversion of unsafe food, adulteration, substitution or misrepresentation of food, and document fraud.

WEBINAR's STRUCTURE


lality vs Sale

 Current approaches; Assessing Meat Quality, Safety & Adulteration

Tools (a) Non-destructive methods for assessing mean rual v, safety and Fraud (b) Implementation of ML in reat

Current Food Safety Management System

The (whole) production process is based on the analysis of THE END / FINISHED product.

Current Tools

- Sensory analysis (expensive, time-consuming)
- Conventional microbiology (Results in 2-3 DAYS)
- Molecular tools (results in 18-30 HOURS)
- Single (bio-chemical metabolite) compound [not feasible]
- Modelling (Predictive); Few public free and private software are available [Initial population should be known (measurements take 18 to 72 h)]

Food Industry, Food Authorities and consumers need results in minutes, if not in seconds!!!

WEBINAR's STRUCTURE

Definitions Quality vs Safet Current approaches sing Meat Quality Safety 8 Adulteration

- Future approaches; Assessing Meat Quality, Safety & Adulteration
- Tools; (a) Non-destructive methods for assessing meat quality, safety and Fraud (b) Implementation of ML in meat quality safety, authenticity (c) IoT serving meat sector

horsemeat, beef vs pork & poultry vs pork

Future Approaches

(What is) Process Analytical Technology (PAT)

Basis for the concept of "Quality by Design" : <u>holistic systematic</u> approach in which predefined <u>specifications</u>, processes and critical <u>parameters</u> are taken into account in quality control

Future Tools

Process Analytical Technologies (PAT) [Implementation of QbD]

- Sensors; In On At line analytical instruments to measure parameters (including Next Generation Sequencing)
- Data Science; Data Analytics, Data mining, Machine Learning
- Information Communication Technology

PAT's Tools; (a) Sensors

In – On –At line non-invasive analytical technologies (desktop, handheld, miniaturized) based on spectroscopy and/or image analysis *to measure quality & safety parameters*

PAT's Tools; (a) Sensors con/ed

In – On –At line non-invasive analytical technologies (desktop, handheld, miniaturized) based on spectroscopy and/or image analysis *to measure quality & safety parameters*

PAT's Tools; (a) Sensors .. con/ed

List of representative rapid methods e.g. Imaging and Spectroscopy applied in meat which their measurement can be 'translated' into quality parameters

Type of Sensor	Food Type	Purpose
Imaging	Beef fillets, Meat, Pork, beef, Chicken fillets, Packaged beef, Beef and horsemeat (minced)	Spoilage, adulteration (horse), meat colour, pseudomonads, microbial counts
Spectroscopy	Animal origin foods: beef, pork, lamb, pork, poultry	Spoilage Detection of adulteration, Quality control analysis, Assessment of microbial contamination

Ropodi et al. Trends in Food Sci. & Techn. 50,11-25

Data Science	(b) Data Science Data mining, Data a amount of data is gene ents and this is a challer	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
products	purpose	data analysis
Beef fillets, Meat, Pork, beef, Prawn, Beef, horsemeat, Minced mutton, Pork, Minced beef, Minced beef	Spoilage, Monitoring meat colour, Adulteration, Detection of adulteration, Detection of adulteration, Discrimination of beef and horse meet, Quality control analysis, Assessment of microbial contamination, authentication, adulteration detection (pork proportion in minced mutton), Freshness (TVB- N content), Identification of frozen-then-thawed minced beef labelled as fresh	Principal Component Analysis (PCA), Principal Component Regression (PCR) Hierarchical Component Analysis (HCA) Partially Linear Model (PLM) Partially Least Squares Regression (PLS) PLS - discriminant analysis (PLS-DA) Linear Discriminant Analysis (LDA) Support Vector Machine (SVM) Least Squares-SVM, Artificial Neural Networks (ANN) k-Nearest Neighbors Algorithm (kNNA) Random Forest Regression (RFR)

Tsakanikas, et al. (2020) A machine learning workflow for raw food spectroscopic classification in a future industry. Scientific Reports 10:10:111212 Nychas et al (2021), Data Science din the Food Industry. Annual Review of Biomedical data Science https://doi.org/10.1146/annurev-biodatasci-020221-123602

v

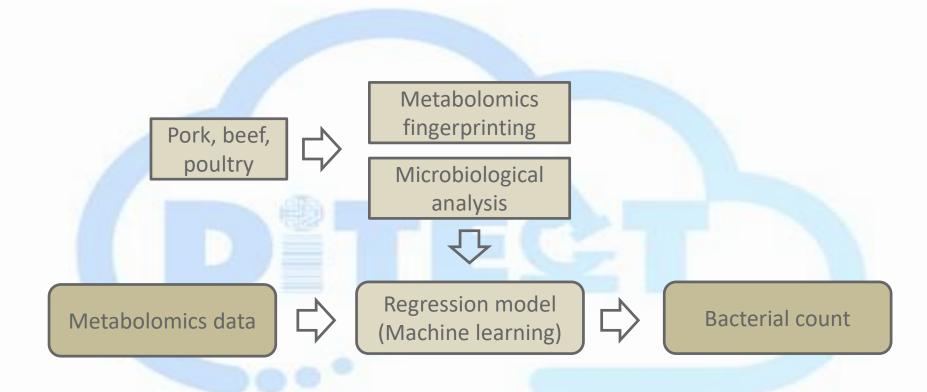
WEBINAR's STRUCTURE

in the second se

 Use Cases; Meat microbiological quality, beef vs horsemeat, beef vs pork & poultry vs pork

USE CASE 1; Assessing microbial quality of minced pork

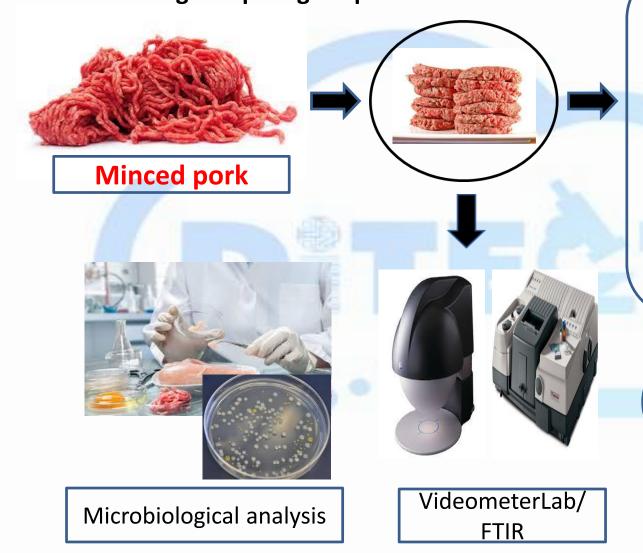
Article


Estimation of Minced Pork Microbiological Spoilage through Fourier Transform Infrared and Visible Spectroscopy and Multispectral Vision Technology

Lemonia-Christina Fengou[®], Evgenia Spyrelli, Alexandra Lianou[®], Panagiotis Tsakanikas[®], Efstathios Z. Panagou[®] and George-John E. Nychas *[®]

Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece

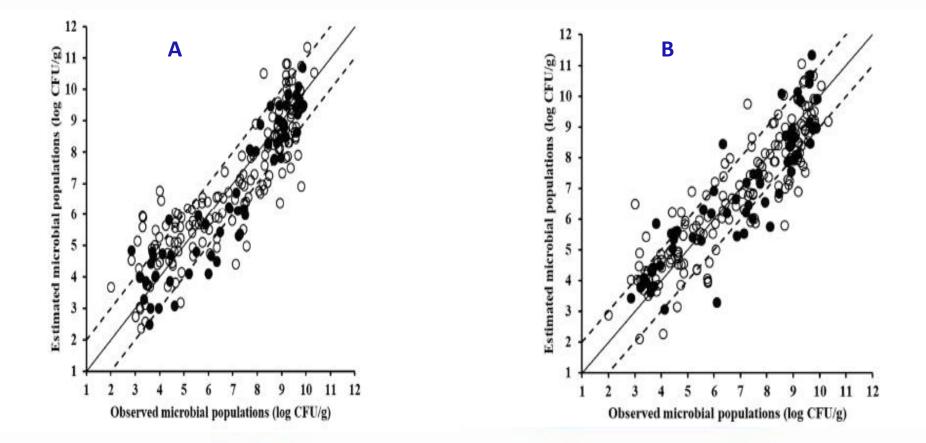
* Correspondence: gjn@aua.gr


Combining analytical instruments (metabolomics) & machine learning

• The use of metabolomics analytical platform in tandem with machine learning allows to assess the freshness of meat samples.

Combining analytical instruments (metabolomics) &

machine learning Microbiological spoilage experiments



Packaged in *modified atmospheres* ($80\% O_2^ 20\% CO_2$) and stored at:

- *Isothermal* conditions (4, 8, 12°C)
- Dynamic temperature conditions (periodic temperature changes between 4 and 12°C)

4 batches 431 samples

Minced pork ; FTIR (A) & VIS (B) measurements; Comparison between observed and predicted total viable counts (TVC) by PLSR model

Training (solid symbols, 170 samples); validation (open symbols, 58 samples) datasets (solid line: the ideal y= x line; dashed lines: the ±1 log; The root mean squared error (RMSE, log CFU/g) for the prediction of the test (external validation) dataset for the FTIR and VIS models was 0.915 and 1.034, respectively, while the corresponding values of the coefficient of determination (R2) were 0.834 and 0.788. 26

USE CASE 2; Beef vs Pork

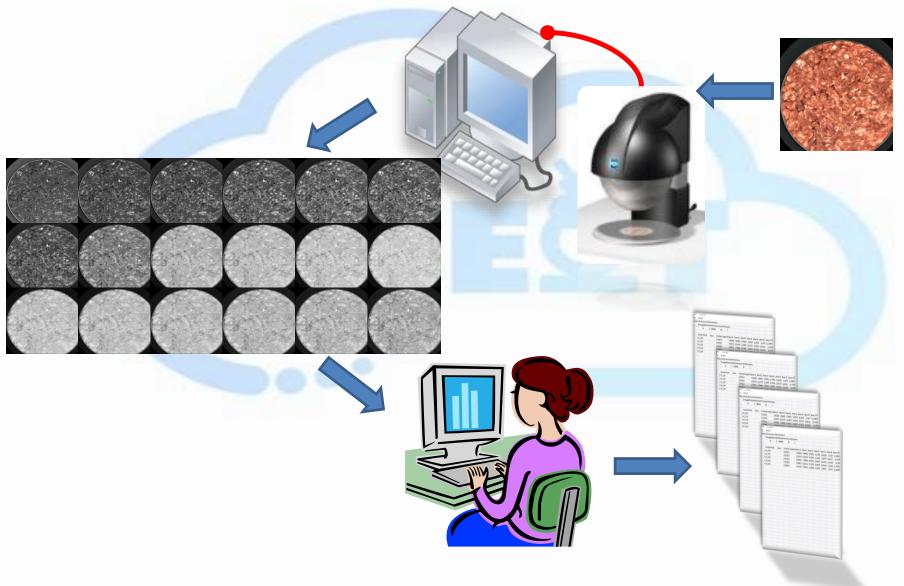
Food Research International 67 (2015) 12-18

Multispectral image analysis approach to detect adulteration of beef and pork in raw meats

A.I. Ropodi^{a,1}, D.E. Pavlidis^{a,1}, F. Mohareb^b, E.Z. Panagou^a, G.-J.E. Nychas^{a,*}

^a Agricultural University of Athens, School of Food, Biotechnology & Development, Dept Food Science & Human Nutrition, Lab of Microbiology & Biotechnology of Foods, Iera Odos 75, Athens 11855 Greece

^b The Bioinformatics Group, Biomedical Engineering Centre, Cranfield University, College Road, Bedford, MK43 0AL, UK


Materials & Methods - Sample data

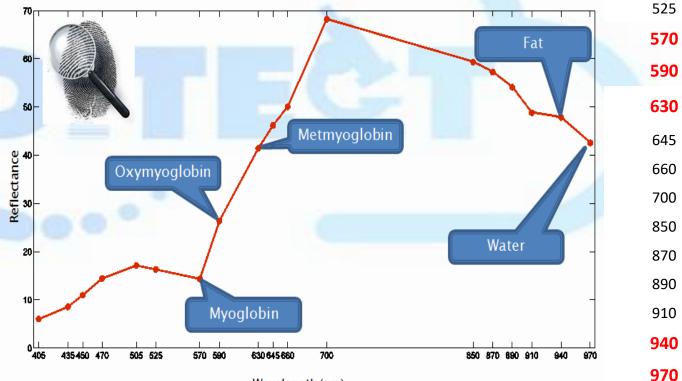
The original data set consists of 319 minced meat samples.
Specifically:

100% Pork; 21 batches x 5 replicates = 105 samples
100% Beef; 22 batches x (4) 5 replicates = 109 samples
70,50 & 30 % beef vs pork; 21 batches x 5 replicates = 105 samples

- Packaging: MAP (80% O₂, 20% CO₂).
- Samples were provided from a local meat processing plant.

Materials & Methods-Multi Spectral Imaging (VideometerLab) In Action

70 60 50


Materials & Methods – Multi Spectral Imaging (VideometerLab) Wavelengths (100 405

 Wavelengths ranging from 405-970nm (visible & NIR region). 435

450

470

505

Wavelength (nm)

LDA and PLS-DA (12 PLS components) for both validation set and external validation batch with 3 classes (pork—adulterated—beef).

LDA				PLS-DA							
Validation set											
	classified as						classified as				
	pork	adulterated	beef	Recall			pork	adulterated	beef	Recall	
is pork	5	1	0	83.3%		is pork	5	1	0	83.3%	
is adulterated	0	54	0	100.%		is adulterated	0	54	0	100%	
is beef	0	0	6	100.%		is beef	0	0	6	100%	
Precision	100%	98.2%	100%			Precision	100.%	98.2%	100%		
					PLS-DA						
		LDA			1		PJ	S-DA			
		LDA	EXTER	RNAL Vali	id	ation BAT(S-DA			
	cl	LDA assified a		RNAL Vali	id.	ation BAT(S-DA	s		
	Cl			Recall	ic	ation BAT(S beef	Recall	
is pork		assified a	IS		id	is pork	CH cl	assified a		Recall 100%	
is pork is adulterated	pork	assified a adulterated	IS beef	Recall	id		CH Cla pork	assified a	beef		
is	pork 4	assified a adulterated 0	IS beef 1	Recall 80%	id	is pork is	CH cla pork 5	assified a adulterated 0	beef O	100%	

USE CASE 3; Beef vs. Horsemeat

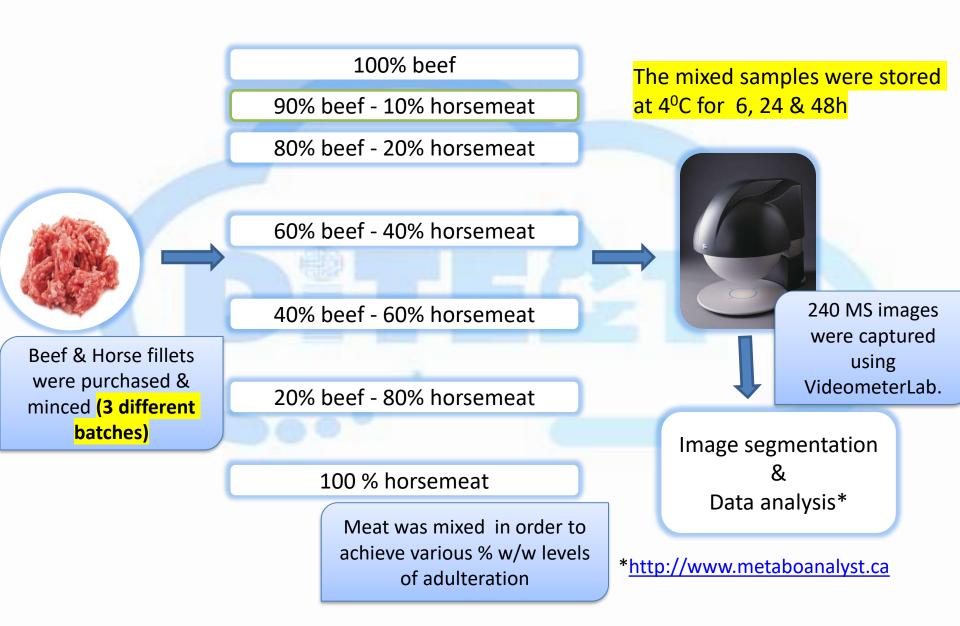
Contents lists available at ScienceDirect

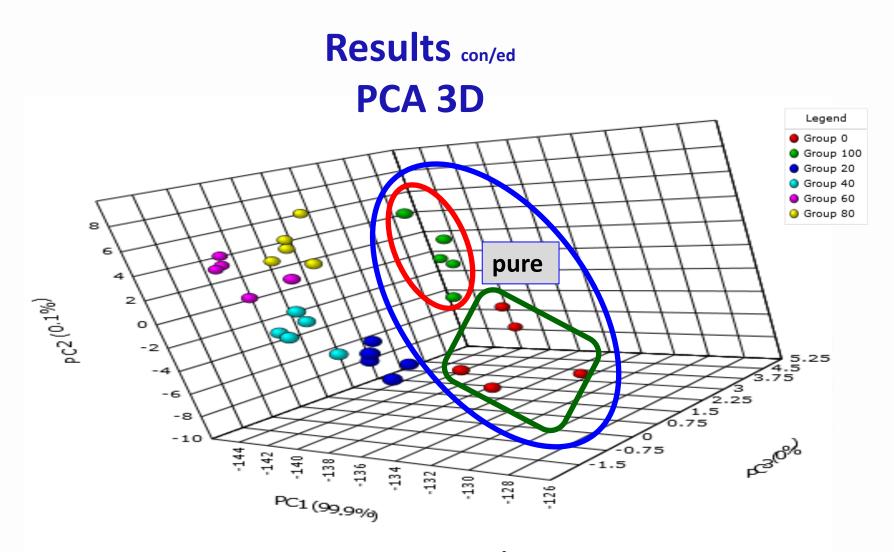
Food Control

journal homepage: www.elsevier.com/locate/foodcont

Multispectral imaging (MSI): A promising method for the detection of minced beef adulteration with horsemeat

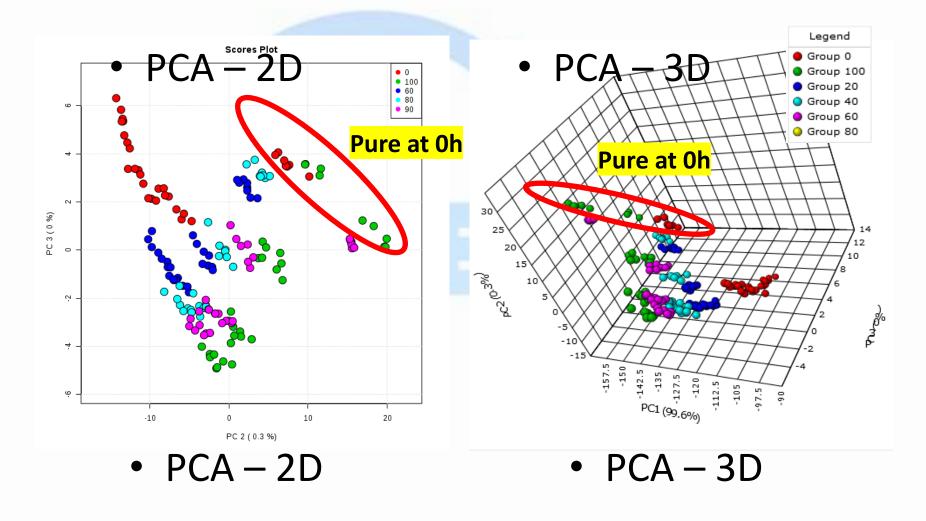
Athina I. Ropodi, Efstathios Z. Panagou, George-John E. Nychas*

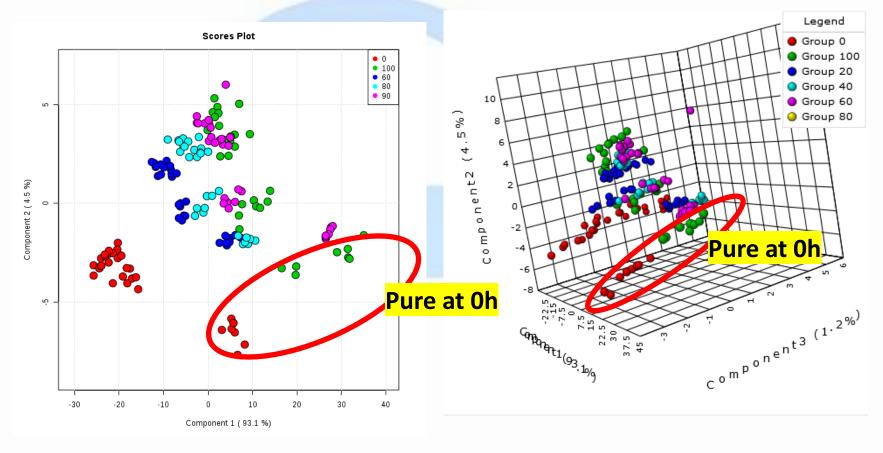

Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of Athens (AUA), IeraOdos 75, Athens, 11855, Greece


Multispectral Imaging (MSI); a Promising Method for the Detection of Minced Beef Adulteration with Horsemeat (Food Control 2017)

Background knowledge & Previous work

- DNA-based methods are very accurate however, they are expensive, time-consuming and require highly-trained personnel.
- Limited number of studies have been published concerning rapid methods and meat adulteration, mostly featuring vibrational spectroscopy instruments (IR, Raman)
- Concerns/ Limitations of published studies:
 - The samples come from one meat batch and is not representative of variability found in real life.
 - The number of tested samples is usually small.
 - Validation without external (independent) data


Experiment Design



common autolight/calibration

Effect of Storage on adulteration assessment Principal Components Analysis

Effect of Storage on adulteration assessment Partial Least Square Discriminant Analysis

PLSDA – 2D

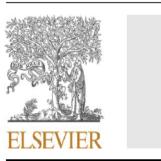
PLSDA – 3D

Concerns ...

.. Since the discrimination among various levels of adulteration is more complex depending on whether the horse samples are freshly minced or not.... a more sophisticated algorithm was used for model development such as FOREST TREE

Results from Random Forest

8.0 Overall 0 Only one sample was categorized in 100 60 0.6 80 a non-adjacent category. 90 Error 0.4 Only 3.8% of samples were categorized in a \geq 20% category. 0.2 0.0 0 100 200 300 400 500


Random Forest classification

trees

Sample	Predicted as 0	Predicted as 60	Predicted as 80	Predicted as 90	Predicted as 100	Class error
Is 0 (0 в/100н)	32	0	0	0	0	0.0
Is 60	0	30	2	0	0	0.0625
ls 80	0	3	26	2	0	0.161
ls 90	0	0	0	28	3	0.0968
ls 100	0	0	1	4	27	0.156

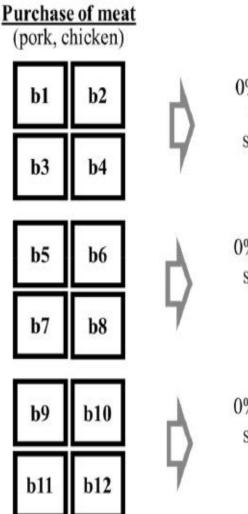
USE CASE 4; pork vs poultry


Food Control 125 (2021) 108002

Contents lists available at ScienceDirect

Food Control

journal homepage: www.elsevier.com/locate/foodcont


Rapid detection of minced pork and chicken adulteration in fresh, stored and cooked ground meat

Lemonia-Christina Fengou^{*}, Panagiotis Tsakanikas, George-John E. Nychas^{**}

Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece

Experimental design

Sample preparation Adulteration level:

0%, 10%, 25%, 40%, 50%, 60%, 75%, 90%, 100% Samples per adulteration level: 5 Number of samples: 180

Image acquisition

Freshly ground samples (0h). Samples stored at 4 °C (24h & 48h). Cooked samples.

0%, 25%, 50%, 75%, 100% Samples per adulteration level: 6 Number of samples: 120

Freshly ground samples.

0%, 25%, 50%, 75%, 100% Samples per adulteration level: 3 Number of samples: 60

Freshly ground samples.

Fengou et al., 2021 (Food Control)

Confusion matrix for SVM classification for the External Validation (n=90) of the fresh samples using MSI data considering 3 classes; 0% pork-100% chicken (0%) - adulterated (A) - 100% pork-0% chicken (100%).

		Predicted class			
True class	0%	А	100%	Recall (%)	
0%	14	0	0	100.00	
A	0	62	0	100.00	
100%	0	3	11	78.57	
Precision (%)	100.00	95.38	100.00	Accuracy (%) 96.67	

Support Vector Machine (SVM) classification of fresh, stored at 4° C, and cooked minced pork, poultry or mixed [0% pork - 100% chicken and vice versa] samples, using Multi Spectral Imaging data. Nine (9) or three (3) steps of Adulteration were considered while External Validation evaluated with either 90 or 45 no of samples

type of meat	No of samples	condition of meat samples	adulteration steps/ Replicates /validation samples	Accuracy (%) External Validation
pork vs	360	Fresh	9 /6/ 90	84,44
poultry, Adulteration	360	Fresh	3 /6/ 90	96,67
from 0 to 100% (steps either 9 or 3) & 3,5 or 6 replicates	180	stored for 24H	9 /5/ 45	73,33
	180	stored for 48H	9 /3/ 45	66,67
	180	stored for 24H	3 /5/ 45	97,78
	180	stored for 48H	3 /3/ 45	95,56
	180	cooked	9 /5/ 45	84,44
	180	cooked	3 /5/ 45	95,56

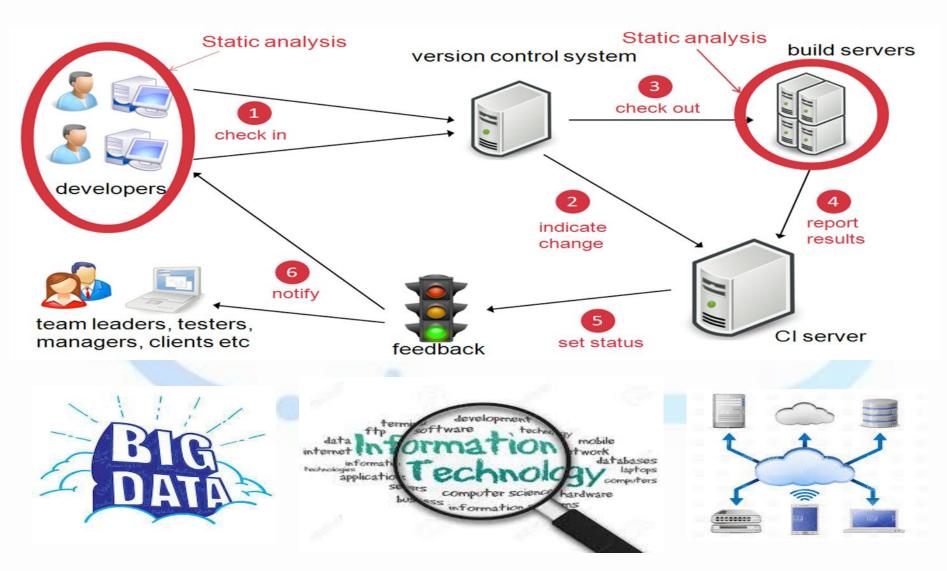
Summarizing ...

Type of sensor	Food type	Purpose	Number of samples	Data analysis	Reference
FTIR, MSI	minced beef	Detection of frozen- then-thawed minced beef labelled as fresh.	105	PLSDA, SVM	Ropodi et al., 2018
MSI	beef vs. horsemeat	Minced beef adulteration with horsemeat, as well as model performance during storage in refrigerated conditions.	110 (350 images)	PLSDA, RF, SVM	Ropodi et al., 2017
MSI	beef vs. pork	Minced beef fraudulently substituted with pork and vice versa.	220	PLSDA, LDA	Ropodi et al., 2015

Summarizing ...

Type of sensor	Food type	Purpose	Number of samples	Data analysis	Reference
MSI	pork vs. chicken	Detection of meat adulteration in fresh, stored, and cooked meat.	360 samples/images (fresh) 180 images (stored) 180 Images(cooked)	SVM	Fengou et al., 2021 (Food Control)
MSI, Vis, Fluo	pork vs. chicken & beef vs. offal	Detecting minced meat substitution of: (i) beef with bovine offal and (ii) pork with chicken (and vice versa) both in fresh and frozen- thawed samples.	120 samples pork vs. chicken 120 samples beef vs. offal	PLS transform ed spectral data, SVM	Fengou et al., 2021 (foods)

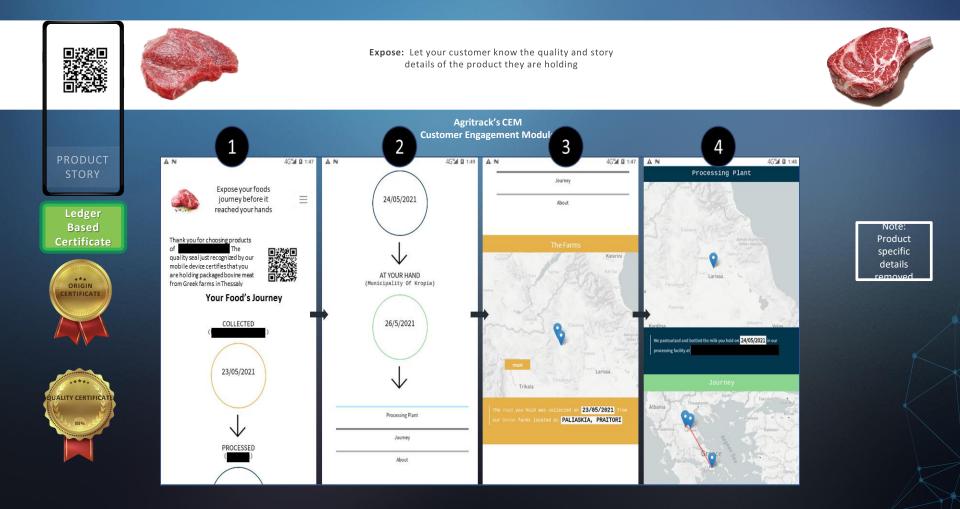
Next Generation Strategies ...


Future Tools

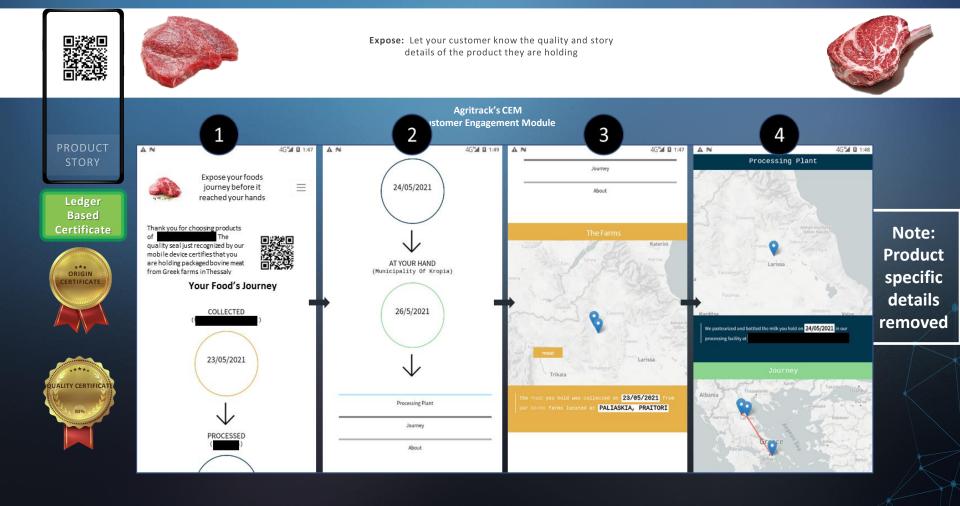
Process Analytical Technologies (PAT) [Implementation of QbD]

- Sensors; In On At line analytical instruments to measure parameters (including Next Generation Sequencing)
- Data Science; Data Analytics, Data mining, Machine Learning
- Information Communication Technology

PAT's Tools; (c) ICT


Information/data management and continuous optimization

Tsakanikas, et al., (2020) A machine learning workflow for raw food spectroscopic classification in a future industry. Scientific Reports 10:10:111212 Nychas et al (2021) Data Science in the Food Industry. Annual Review of Biomedical data Science <u>https://doi.org/10.1146/annurev-biodatasci-020221-123602</u>


PAT's Tools; (c) ICT

PAT's Tools; (c) ICT

MeatTrack DEMOCRATIZING TRACEABILITY AND QUALITY

Summary - Conclusions – Future Plans

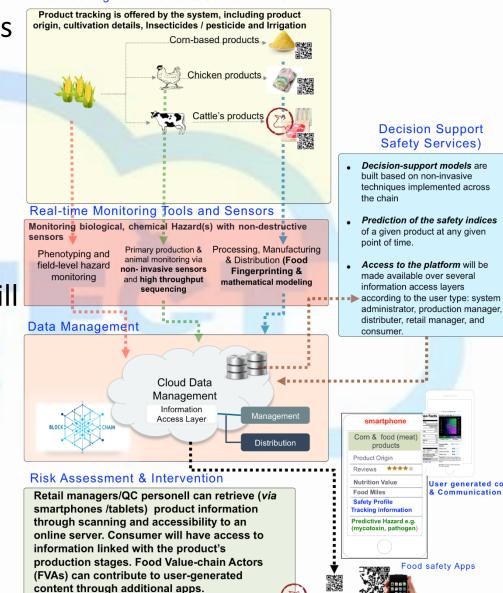
- FTIR, MSI, VIS are indeed a promising methods for assessing microbial quality of meat and meat products as well as for the detection of fraud / adulteration of meat.
- Storage of minced meat has a significant effect on the images captured by the MSI instrument and consequently on the final developed model.
- More experiments involving different batches should be added, so that the developed model takes into account the variability found among different batches.
- Further, independent validation of the model(s) developed should be performed.

Meat adulteration/fraud

- Ropodi, A. I., Pavlidis, D. E., Mohareb, F., Panagou, E. Z., & Nychas, G. J. (2015). Multispectral image analysis approach to detect adulteration of beef and pork in raw meats. *Food Research International*, 67, 12-18.
- Ropodi, A. I., Panagou, E. Z., & Nychas, G. J. E. (2017). Multispectral imaging (MSI): A promising method for the detection of minced beef adulteration with horsemeat. Food Control, 73, 57-63.
- Ropodi, A. I., Panagou, E. Z., & Nychas, G. J. E. (2018). Rapid detection of frozen-thenthawed minced beef using multispectral imaging and Fourier transform infrared spectroscopy. *Meat science*, 135, 142-147.
- Fengou, L. C., Tsakanikas, P., & Nychas, G. J. E. (2021). Rapid detection of minced pork and chicken adulteration in fresh, stored and cooked ground meat. *Food Control*, 125, 108002.
- 5. Fengou, L. C., Lianou, A., Tsakanikas, P., Mohareb, F., & Nychas, G. J. E. (2021). Detection of Meat Adulteration Using Spectroscopy-Based Sensors. *Foods*, *10*(4), 861.

SPOILAGE; Beef, Pork, Poultry,

- Ammor, et al. (2009)– "Rapid Monitoring of the Spoilage of Minced Beef Stored Under Conventionally and Active Packaging Conditions Using Fourier Transform Infrared Spectroscopy in Tandem with Chemometrics" Meat Science 81, 507-515
- Argyri, et al (2010) Rapid qualitative and quantitative detection of beef fillets spoilage based on Fourier transform infrared spectroscopy data and artificial neural networks 20/7 Sensors and Actuators B 145, 146-154
- Panagou et al. (2011). A comparison of artificial neural networks and partial least squares modelling for the rapid detection of the microbial spoilage of beef fillets based on Fourier transform infrared spectral fingerprints. Food Micro 28, 782-790
- Papadopoulou, et al. (2011) Contribution of Fourier transform infrared (FTIR) spectroscopy data on the quantitative determination of minced pork meat spoilage Food Research International 44, 3264-3271
- Argyri, et al.(2013) A Comparison of Raman and FT-IR Spectroscopy For The Prediction of Meat Spoilage. Food Control 29, 461-470
- Papadopoulou, etal. (2013) Potential of a portable electronic nose in rapid and quantitative detection of the microbial spoilage of beef fillets. Food Research Int. 50,241
- Dissing et al. (2013). Using multispectral imaging for spoilage detection of pork meat. Food and Bioprocess Technology 6, 2268-2279
- Fengou, et al. (2019) Estimation of Minced Pork Microbiological Spoilage through Fourier Transform Infrared and Visible Spectroscopy and Multispectral Vision Technology, Foods (MDPI) 8,238 doi:10.3390/foods8070238


DATA SCIENCE

- Ropodi, A, E.Z. Panagou and G.-J. E. Nychas (2016) Data mining derived from Food analyses using noninvasive/non-destructive analytical techniques; Determination of Food authenticity, quality & safety in tandem with Computer Science Disciplines, Trends in Food Science & Technology 50,11-25
- Mohareb, F., Iriondoa, M., Doulgeraki, A.I, Van Hoekc, A., Aarts, H., Cauchia, M, and Nychas, G-J (2015) Identification of meat spoilage gene biomarkers in *Ps. putida* using gene profiling, Food Control 57, 152-160
- Fengou, L-C., Mporas, I., Syrelli, E., Lianou, A., Nychas, G-J (2020) Estimation of the Microbiological Quality of Meat Using Rapid and Non-Invasive Spectroscopic Sensors IEEE Access - DOI 10.1109/ACCESS.2020.3000690
- Nychas, G., Sims, E., Tsakanikas, P., Mohareb, F. (2021) Data Science in Food Industry. Annual Rev. in Biomedical Data Science (Nature Series) In press

DITECT: Digital Technologies as an enabler for a continuous transformation of food safety system. Funded by HORIZON 2020 www.ditect.eu

EU / CHINA Project 11/2020 till 10/2023

Live Tracking for Hazards & Contaminants

User generated content

& Communication Apps

Food safety Apps

PhD candidates, Eugenia SPYRELLI, Eva KATSOURI, Eirini SXOINA, Academic Staff

Collaborator

Prof Fady MOHAREB,

Mr. Vlassis TSEZOS

AGRITRA

Cranfield University, Cranfield, UK,

Athanasios MALLOUCHOS (Asst Prof.)

Post-Doc fellows Dr. Panos TSAKANIKAS Dr. Lenia FENGOU Dr. Evita MANTHOU Dr. Anastasia LYTOU Dr. Dimitris PAVLIDIS Dr. Fotini PAVLI Dr. Maria Govari Exploring Non-Invasive Instruments to Assess the Microbiological Quality and Authenticity of Meat and Meat Products

THANKS FOR YOUR ATTENTION

George-John NYCHAS

Laboratory of Microbiology and Biotechnology of Foods Department of Food Science and Technology Agricultural University of Athens

Contact Information

- George Nychas
- Panagiotis Skandamis

gjn@aua.gr pskan@aua.gr

International Association for

Food Protection.

Join us for these upcoming webinars:

December 1 Process Validation to Meet FSMA Regulations Part 3: Validation Report

December 8 Why Quantification? The Road to Revolutionizing Food Safety

January 26, 2022 Practical Guidance for Validation Studies: From Start to Finish

More information can be found at

https://www.foodprotection.org/events-meetings/webinars/

International Association for

Food Protection.

This webinar is being recorded and will be available for access by **IAFP members** at <u>www.foodprotection.org</u> within one week.

Not a Member? We encourage you to join today. For more information go to: <u>www.FoodProtection.org/membership/</u>

All **IAFP webinars** are supported by the IAFP Foundation with no charge to participants.

Please consider making a donation to the **IAFP Foundation** so we can continue to provide quality information to food safety professionals.

International Association for

Food Protection.